企业信息化建设
电子商务服务平台
 
当前位置: 交易信息网 » 资讯 » 食品工业 » 全球固态锂电池研发进程

全球固态锂电池研发进程

放大字体  缩小字体 发布日期:2017-11-10  浏览次数:7
 1.能量与安全性能持续升级,固态锂电池优势突出

固态锂电池有望成为下一代锂电池发展的重要方向。世界各国先后制订了高能量密度锂电池的研发目标,日本政府率先提出“2020年纯电动汽车用动力电池电芯能量密度达到250Wh/kg,2030年达到500Wh/kg”的目标。2015年11月美国USABC将2020年电芯能量密度目标由原来的220Wh/kg提高至350Wh/kg。《中国制造2025》确定的技术目标是2020年锂电池能量密度到300Wh/kg,2025年能量密度达到400Wh/kg,2030年能量密度达到500Wh/kg。

固态锂电池会成为下一代锂电池?

各国为实现既定的高能量密度的目标,均在积极地进行锂硫电池、锂空气电池、或锂金属电池等电池的先导性研究。从当前能量密度持续提升的态势及研发的进展来看,我国提出的2025年400Wh/kg的能量密度要求较高,正加速倒逼新型电池技术的研发及应用。目前,一些企业研发出的全固态锂电池能量密度可达300-400Wh/kg,其有望成为作为下一代高能量密度动力和储能电池技术的重要发展方向,全固态锂电池的研发和应用已成为学术界和产业界的共识。

相较于传统锂电池,固态锂电池的差异在于电解质固态化。全固态锂电池与传统锂电池一样,包括电池各单元(正极、负极、电解质),其工作原理与传统锂电池的原理相同。

在电解质方面,固态锂电池采用聚合物、无机物等固态电解质替代了传统锂电池中的液态电解质(有机电解液),当前主要以thio-LISICON硫化物、氧化物、聚合物和硼氢化锂基等作为固体电解质,这是二者的核心差异,正是由于这种差异,电解质盐、隔膜与黏接剂等化学物质都不再使用,全固态锂电池结构大为简化。目前电解质的研究主要集中在高电导率的复合型电解质等研发。

在正极方面,以往研究中全固态锂电池主要使用LiCoO2作为正极材料,此外也有LiFePO4、LiMn2O4、三元材料等传统氧化物正极,还能兼容更高电压的氧化物正极、高容量硫化物正极等。正极的研究方向集中在降低正极的界面阻抗,提高高倍率放电性能,方式如原位表面修饰等。

在负极方面,全固态锂电池除了石墨负极之外,一系列高性能负极材料也在不断开发应用,包括金属Li(Li-In合金)、碳族(如碳基、硅基和锡基)、以及氧化物等负极材料。

固态锂电池会成为下一代锂电池?

固态锂电池安全性及高能量密度的性能优势突出。固态锂电池在继承传统锂电池的优点基础上,安全性、能量密度等方面有了大幅进步。

1)安全性极高:与传统锂电池相比,全固态电池最突出的优点是安全性。液态电解质易燃易爆,以及在充放电过程中锂枝晶的生长容易刺破隔膜,引起电池短路,造成安全隐患。而固态电解质不可燃、无腐蚀、不挥发、不存在漏液问题,也克服了锂枝晶现象,因而全固态电池具有极高安全性。

2)能量密度提升:一是电压平台的提升,电池能量密度将增大。有机电解质电化学窗口有限,难以兼容金属锂负极和新研发的高电势正极材料,但是固态电解质比有机电解液普遍具有更宽的电化学窗口,有利于进一步提升电池的能量密度。二是固态电解质能阻隔锂枝晶生长,材料应用体系范围大幅提升,为具有更高能量密度空间的新型锂电技术奠定基础。目前全固态锂电池研发可提供的能量密度基本可达300-400Wh/kg。

图3:固态锂电池性能优势突出

固态锂电池会成为下一代锂电池?

3)循环性能增强:液态电解质在充放电过程中可与锂离子发生不可逆反应,形成固体电解质界面膜(SEI),会导致活性物质和电解质的损失,降低了库伦效率。而固态电解液解决了固体电解质界面膜(SEI)的问题和锂枝晶现象,大大提升了锂电池的循环性和使用寿命(例如LIPON做电解质材料,理想情况下循环性能表现优异,循环45000次左右)。

4)适用范围扩大:固态电解质赋予固态锂电池结构紧凑、规模可调、设计弹性大等特点,固态电池既可以设计成厚度仅几微米的薄膜电池,用于驱动微型电子器件,也可制成大容量电池,用于动力和储能领域。此外,固态材料内在的高低温稳定性,为全固态电池在更宽的温度范围(工作温度范围约为-25C到60C)内工作提供了基本保证。

2.多技术路径并存,全球产业加速布局

电解质材料是全固态锂电池技术的核心。全固态锂电池的电解质材料很大程度上决定了固态锂电池的各项性能参数,如功率密度、循环稳定性、安全性能、高低温性能以及使用寿命。

根据固态电解质材料类别,可以分为聚合物全固态锂电池和无机物全固态锂电池,不同类型的电解质其性能具有较大的差异(可见下表2),根据结构设计的差别,全固态锂电池又可分为薄膜型和大容量型。

表2:各技术主流的特点

固态锂电池会成为下一代锂电池?

图4:全固态锂电池结构:薄膜型(左1和左2)和大容量型(右1)

固态锂电池会成为下一代锂电池?

2.1.聚合物电池高温工作性能好,最先实现商业化

聚合物电池高温工作性能较好,目前最优技术路线,最先实现小规模产业化。聚合物全固态电池的电解质主要是聚环氧乙烷(PEO)、聚丙烯腈、聚甲基丙烯酸甲酯、聚氯乙烯、聚偏氟乙烯等,其中聚环氧乙烷(PEO)研究开发最早也最为成熟。在高温条件下,聚合物(如PEO)离子电导率高,能与正极复合形成连续的离子导电通道,且对金属锂具有较高的稳定性,同时,聚合物容易成膜,其柔性易于加工,既可以制成薄膜型,也能制成大容量型,应用范围广,因而随着材料性能提升和制造工艺的改进,使得聚合物全固态锂电池成为最容易也是最先实现了小规模商业化生产。不过目前聚合物室温电导率较低以及较低的电压其大规模产业化发展仍有限制。聚合物固态锂电池的开发主要以Bolloré、CATL、Seeo、中科院青岛生物能源与过程研究所为代表。

图5:PEO的结构单元及其导电机理

固态锂电池会成为下一代锂电池?

Bolloré生产出的全固态二次电池(LMP),负极材料采用金属锂,电解质采用聚合物(PEO等)薄膜,目前已经批量应用在法国的EV共享服务汽车“Autolib”和小型电动巴士“Bluelus,总体应用超过3000辆。

Seeo开发的全固体二次电池采用大创公司的干聚合物薄膜,提供的样品电池组能量密度为130-150Wh/kg,2017年能量密度能达到300Wh/kg。

国内CATL在聚合物方面也发展较快,目前已经设计制造出了容量为325毫安时的聚合物电芯,表现出较好的高温循环性能。

2017年4月中科院青岛生物能源与过程研究所取得重大进展,该所开发的大容量固态聚合物锂电池“青能I号”完成深海科考,据悉,其能量密度超过250Wh/kg,500次循环容量保持80%以上,在多次针刺和挤压等苛刻测试条件下保持非常好的安全性能。另外,“青能II号”也已经研发成功,能量密度高达300Wh/kg。

固态锂电池会成为下一代锂电池?

2.2.硫化物性能参数极佳,开发潜力巨大

硫化物在工作性能参数上表现良好,且易于加工。硫化物全固态电池的主要电解质是thio-LISICON和LiGPS、LiSnPS、LiSiPS等。

首先,相对于聚合物和氧化物,硫化物的电导率较高,室温电导率可以达到10-3~10-2S/cm,接近甚至超过有机电解液。其次,电化学窗口较宽(可实现5V以上)以及形成膜以后具有比较好的界面稳定性。最后硫化物与聚合物相似,硫化物柔性也较强,易于加工,较大的设计弹性拓宽了硫化物全固态锂电池的应用范围。硫化物仍面临界面问题和硫化物离子环境弱稳定性的限制因素。综合来看,硫化物有着巨大的开发潜力,CATL、丰田等国内外企业纷纷加速布局。

分享与收藏:  资讯搜索  告诉好友  关闭窗口  打印本文 本文关键字:

新闻视频

 
推荐图文
推荐资讯
最新文章